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Abstract. A new treatment of Maxwell’s equations is proposed. It is shown that these 
equations can play the role of subsidiary conditions which separate the conformal sym- 
metric solutions of a fixed third-order differential equation. On the basis of this equation 
a quantisation of Maxwell’s equations is constructed such that the conformal symmetry 
is preserved only in the physical state space. The proposed procedure of conformal 
quantisation is illustrated by the example of a free electromagnetic field. 

1. Introduction 

Investigations in conformal-invariant quantum field theory have shown that the confor- 
mal group can be used as a method for an exact solution of some field models. For 
instance in the paper of Aneva et al (1981) an exact solution of the quantum massless 
Thirring model has been constructed using conformal symmetry. In four-dimensional 
space-time the massless QED is the most interesting theory from the point of view of 
conformal invariance. However, the present methods of quantisation of the elec- 
tromagnetic field with strong gauge fixing do not lead to conformal invariant theories 
even in the case of free fields. On the other hand, the absence of charged massless 
particles in QED could be explained naturally on the basis of exact conformal symmetry. 
For example, the full two-point Wightman function of massless fermions, found in 
Sotkov and Stoyanov (1980) using conformal symmetry, has no pole. It is evident 
that for a physically reliable result, it is also necessary to know how to quantise 
Maxwell’s equations in a conformally invariant way. As is well known, in a conformal- 
invariant quantum field theory, using only irreducible linear representations of the 
conformal group one can only obtain the pure longitudinal photon Wightman function. 
Baker and Johnson (1979) have suggested that in order to eliminate this difficulty, 
one should consider conformal invariance up to local gauge transformations (see also 
in this connection Todorov et a1 (1978)). Another way out of this situation is by the 
nonlinear realisations of the conformal group, proposed by Sotkov and Stoyanov 
(1980). 

In this paper the new treatment of Maxwell’s equations is discussed. The main 
point of this approach is that these equations play the role of subsidiary conditions 
which single out the conformal-symmetric solutions of a fixed third-order differential 
equation. It is shown, on the basis of this equation, that a quantisation of the Maxwell’s 
equations exists such that the conformal symmetry is preserved only in the physical 
state space. It turned out that the space of the physical photon states is included in 
the vector field state space, which is larger than the one in the Gupta-Bleuler gauge. 
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We illustrate the proposed procedure for conformal quantisation by the example of 
a free electromagnetic field. 

Finally, as a natural consequence of our arguments, it has been proved that the 
photon spaces in Gupta-Bleuler gauge with and without interaction have no common 
elements. 

2. Conformal-invariant gauge condition 

We consider the pair ( D ( x ) , J , ( x ) ) ,  consisting of a scalar field D(x) and the vector 
field J,(x) with scale dimensions d D  = 4 and dJu = 3 (in mass units) which have the 
usual homogeneous dilatation laws and the following special conformal transforma- 
tions: 

J: ( x )  = (P(a, x ) - 2 ( a x ‘ v / a x ” ) J , ( x ‘ )  (2 .2 )  

where cc., v = 0, 1 ,  2 ,  3 ;  x”’ are the coordinates of a point in Minkowski space-time 
with metric g,”: diag g,, = ( 1 ,  -13); H is a fixed constant; x :  denote the coordinates 
of the point x ,  after special conformal transformations (with parameters a,): 

2 

p (a ,  x )  = 1 + 2(a x )  f a  2 x 2  a * x = a ,x yg,u. I X , + f f , X  

p ( a , x )  
x ,  = 

A realisation of the conformal group of this kind has been considered by Bayen and 
Flato (1976) in connection with the conformal invariance of Maxwell’s equations. We 
shall use these representations of the conformal group to formulate a conformal- 
invariant gauge condition for the electromagnetic potential A, ( x )  not only for the 
case of free fields, but also for interacting fields. For this purpose we shall consider 
two explicit constructions of the field pair ( D ( x ) ,  J , ( x ) )  with transformation laws (2 .1 )  
and (2 .2 ) :  

(a) The first one arises when we identify the field J ,  with a conserved current j,, 
i.e. J , ( x )  j , (x )  and 

a”j, ( x )  = 0. (2 .3 )  

As is well known, when the current has a canonical dimension djr = 3,  the condition 
(2 .3 )  is invariant with respect to the transformation (2 .2 ) .  In order to construct the 
field D(x)  we introduce another scalar field S ( x )  with a dimension ds = 0 and with 
the following special conformal transformations: 

(2 .4 )  

where q is an  arbitrary constant and e is a dimensionless electric charge. The field 
with such transformation properties has been considered in Sotkov and Stoyanov 
(6980).  It can be verified directly that under the conformal group the scalar quantity 

S‘(x) = Sk’) -e4 lnlp(a, x ) l  

- (2H /eq)a , (s (x ) j ’ (x ) )  

transform according to (2 .1 )  and, therefore, it is a concrete realisation of D(x). In 
this way we obtain the first pair: 

D ( x )  = - (2H /e4 )aF(S jw)  J, ( x  1 = j,. (2 .5 )  
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(b) The second realisation we find with the help of the electromagnetic vector 
potential A,  with a dimension dA,  = 1 and with the following special conformal 
transformation (see Sotkov et a1 (1979) ) :  

(2 .6 )  

where C is an arbitrary constant. Starting from equation (2 .6 )  it is easy to check that 
the fields HUIY”’, and a”F,, (FWy = a,A, -&.A,) transform according to the laws (2 .1 )  
and ( 2 . 2 )  respectively. Thus, we obtain the second realisation: 

D ( x )  = HOa”A, J,  ( x )  = a@Fv,. (2 .7 )  

We equate the corresponding expressions (2 .5 )  and (2 .7 )  for D ( x )  and J , (x )  and 

A:(x) = (dx’”/~3x”)A.(x‘)+Ca, ln)p(a, x ) l ,  

obtain the following system of equations 

Oa’A,(x) = - (2 / eq ) j@(x)a ,S (x )  (2 .8 )  

aFF,, ( x  ) = iy ( x )  (2 .9)  
which is evidently conformal invariant. Thus, we have proved the statement: the 
system of differential equations ( 2 . 8 )  and (2 .9 )  is invariant with respect to the conformal 
tranformation given by (2 .2 ) ,  (2 .4 )  and (2 .6 ) .  

Equations (2 .9 )  coincide with Maxwell’s equation and equation (2 .8 )  can be con- 
sidered as a gauge condition. We shall note here two important properties of the 
system obtained above. 

Property 1. The conformal symmetric solutions of equation ( 2 . 8 )  satisfy Maxwell’s 
equations (2 .9 )  and vice versa. 

Here we used the following definition. Given equation (2 .8 )  with fixed S(x) and j , ( x ) ,  
let A,(x)  be its arbitrary solution. We shall call a solution conformal symmetric if 
the result AL(x) obtained after the transformations ( 2 . 6 )  satisfies the equation 

(2 .10 )  
The proof of property 1 follows directly from the conformal invariance of the system 
equations ( 2 . 8 )  and (2 .9 ) .  Indeed, substituting A:, S ‘  and j :  from (2 .2 ) ,  (2 .4 )  and 
(2 .6 )  in equation (2 .10 )  for infinitesimal values of the parameters a, we obtain the 
identity 

Oa”A:(x) = - ( 2 / e q  ) j :  (x)a’S’(x ). 

[ ( X  2S - ~ X , X  ”)av - 8x, ]OaPA,  + 4apFp, 

= - ( 2 / e q ) [ ( x 2 s ;  - 2x,x ”)a, - 8 x , ] j p ( x ) a ~ ( x  1 + 4j , (x)  (2 .11 )  

Thus, we establish the fact that Maxwell’s equations can be considered as a 
for which our statement follows immediately, 

subsidiary condition which singles out the conformal symmetric solutions of (2 .8 ) .  

Property 2. The system of equations (2 .8 )  and (2 .9 )  is preserved by the gauge 
transformations 

A,-+A,+a,4 i, -+i” S -+ S +constant (2 .12)  
if the field 4 ( x )  satisfies the equation 

O2C$(x) = 0 = gWy a” a”. (2 .13 )  
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This can be verified directly by substitution of (2.12) in (2.8) and (2.9). The conformal 
invariance of (2.8) and (2.9) shows that the conformal transformations can change 
the gauge arbitrariness (2.13). It is easy to see that any restriction on this gauge 
freedom leads to breakdown of the conformal symmetry. From this point of view we 
can consider (2.8) as a conformal invariant gauge condition for the electromagnetic 
potential A,(x). 

3. Conformal invariant quantisation of Maxwell’s equations 

The results of 0 2 allow us to formulate a conformal invariant procedure for quantisa- 
tion of the Maxwell equations: 

(3.1) 

This approach is based on equation (2.8) which after appropriate normalisation of 
the I Jrrent j,(x) = eqj:(x) has the form 

ua”A, = - 2 j z a ” ~ .  (3.2) 
Equation (2.2) has the priority to Maxwell’s equations that the differential operator 
03 ,  is not degenerate. 

Let us assume that we have managed to quantise equation (3.2) in Heisenberg 
representation provided the field satisfies the equation 

a@F,, =CIA. -a,a@A, = j,. 

O2S(X) = 0. (3.3) 
There are many papers (see e.g. Zwanziger 1978, Sotkov et a1 1979, Mintchev 1980) 
devoted to the quantisation of the field S. Here we shall write only the commutator 

(3.4) 
where S*(x) denote the creation and annihilation operators respectively, A is an 
arbitrary constant and 

[S-(x), S + ( y ) ]  = -iAE-(x - y )  

~ ‘ ( x )  = *i(47r-.’ In(-k2x2riOxo). (3.5) 

E (x )=E+(x)+E- (x )  = ( ~ T T T ) - ~ E ( x ~ ) ~ ( x ~ )  (3.6) 

[S(x), S ( y ) ]  = -iAE(x - y ) .  

The full commutation function E ( x )  has the form 

and it also follows that 

(3.7) 
The field S ( x )  has the right transformation properties under the conformal group in 
the sense that the transformation (2.4) preserves both equation (3.3) and the commu- 
tator (3.4) (see Sotkov et a1 1979, Sotkov and Stoyanov 1980). 

As usual, the problem of the quantisation of equation (3.2) reduces to consistent 
determination of the operators jz(x)  and A,(x). If j;(x) is not an external classical 
current it can be expressed by the electron-positron fields 4 (x )  and &(x) which satisfy 
the Dirac equation with interaction. This would be the standard quantisation pro- 
cedure for interacting fields if equation (3.2) were not a third-order differential 
equation. 

We assume further that we have solved the problem for a quantisation of equation 
(3.2). It would mean that besides the operators A,, j : ,  S and I I ,  we have constructed 
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the space X, where these operators act. Let 14) denote the vector of X and let us 
write equation (3.2) for the matrix elements of the corresponding operators: 

Ua”(411A, (x = -2 I (4llj”,x ) I # ) @  b”S(x (3.8) 

The symbol j,m)Ex stands for summation over the vectors of the relevant full basis in 
X. 

Evidently equation (3.8) is of the form (2.8) and, therefore, the results obtained 
in 9 2 are also valid for it. In particular, we shall illustrate once again the validity of 
property 1 . For this purpose let us write the transformations (2.2), (2.4) and (2.6) 
for the matrix elements of the operators A,, j: and S .  The infinitesimal form of these 
transformation laws is 

l 1 k X  

(3.12) 

Hence we conclude that the conformal-symmetric matrix elements of the operator 
A, (x )  (i.e. those of them which satisfy (3.12)) are also solutions of Maxwell’s equations: 

Thus, the conformal-symmetric property of the matrix elments is a criterion that they 
satisfy (3.13). 

We note that (3.2) (and also (3.8)) determines a very large quantum system, whose 
state space &4 includes not only QED. This statement follows from the fact that 
solutions of equation (3.8) exist which are not conformal symmetric. 

Let X o c %  be the subspace of vectors 14) such that the matrix elements 
(41/A,(x)14z), q$ E %have the conformal symmetric property. It is evident that these 
matrix elements satisfy (3.13) and hence the space X o  contains the physical photon 
states of QED. The transformation (3.9) for the conformal symmetric matrix elements 
induces in X0 a representation of the conformal algebra. 
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In this way the quantisation of equation (3.2) and the separation of the subspace 
2' c X determine a conformal-invariant procedure for quantisation of the electromag- 
netic field. The further construction of the physical state space Zph c @ depends on 
the concrete structure of Zo and this will be demonstrated in § 4. 

4. Free electromagnetic field 

Equation (3.2), in the case of the free electromagnetic field, takes the form 

Oa"A,, ( x )  = 0. (4.1) 

In order to construct the quantum theory of A ,  we must find the general form of the 
commutation function satisfying (4.1) with the standard initial conditions. Here we 
propose a particular form of scale and PoincarC invariant commutation relation with 
the necessary gauge freedom (2.13): 

[A, (X ), A,(y 11 = -ig,.D(x - Y )  + ixa, ,aS(x - Y )  A r v k  - Y )  

[A,(x ), S ( y  )] = i.rd,,E(x - y) A,, ( x  - y ) .  

(4.2) 

(4.3) 

Here x and T are normalisation constants and D ( x )  is the commutation function of 
the massless scalar field: 

D ( x )  = (2+r)-1E(x')s(x2). 

The functions D ( x )  and E ( x )  (and also their frequency parts) are related by the 
equalities 

O E ( x )  = D ( x )  d,E(X)  = + X , D ( X ) .  (4.4) 

[A;(x), A :(x)] = -ig,D-(x - y) + ixd,d,E-(x - y ) 

The commutation relations (4.2) and (4.3) for the frequency partSA:, S' have the form 

(4.5) 

[A,(x), S + ( y ) ]  = ird,E-(x - y )  (4.6) 

and all other commutators are equal to zero. 
We shall realise the operators A, and S satisfying equations (4.1) and (3.3) in the 

Fock space R. Since the results of this 'section can be easily generalised for the 
n -particle states we consider here only the one-particle state space 

Let us denote with 10) the common vacuum vector of A,, and S :  
c R'. 

A,(x)lO) = 0 = S-(x)lO). 

Then the general form of the one-particle states is the following: 

(4.7) 

where cp,(x) and,+) belong to the space S(R4)  of the infinitely differentiable functions 
of four arguments which tend to zero more quickly than any powers of l/lxJ when 
1x1 tends to infinity. The vectors (4.7) form the subspace of one-particle states 
It is evident from (4.7) that any vector ~ q 5 ~ l I ) ~ R ' ~ l ~  is described by five functions 
{ q , , ~ } .  The commutators ( 4 . 9 ,  (4.6) and (3.4) define the scalar product in the 



Conformal quantisation of electrodynamics 2823 

one-particle Fock space %‘(I) which in terms of Q, and ,y has the form 

Obviously the form (4.8) is not positive definite. 

from %‘(1): 

B,(x; 4(1)) = (OIA;(X)I~(IJ 

Let us consider the unique non-zero matrix element of A, taken over the states 

= -i I cp,(y)D-(x - y )  d4y +ix q”(y)a,d&-(x - y )  u4y 

(4.9) 

It follows immediately from the explicit form of B, that these matrix elements satisfy 
equation (4.1) for any E %‘(I). As was noted in D 3 we should separate from the 
obtained solutions of equation (4.1) those of them which are conformal symmetric. 
This means that we separate from equation (4.9) the solutions which satisfy the 
equation 

oa’[(ax’”/ax’)B”(x’; 4(1,)1= 0. 

The direct calculation leads to the following restriction for the functions Q, (x ): 

a’”Cp,(x) = 0 (4.10) 

while ~ ( x )  remains arbitrary. For simplicity, in order to work only with homogeneous 
transformations for the matrix elements, we impose one more restriction on Q, and x: 

J x(x)  d4x = o = Q,(x) d4x (4.11) 

which means that we shall consider only the subspace SO(&) c S(R4) .  The conditions 
(4.10) and (4.11) determine the subspace X~l)c%’ , l ,  and it is easy to check that 
B,(x; 4)  for any 1 # ( 1 , ) ~  el) satisfy Maxwell’s equations: 

(4.12) 

Therefore, the physical photon states belong to %‘:I). 

We shall now prove that in %‘PI) a representation of the conformal algebra is 
realised. The requirement for B , ( x ;  c$ (~ ) )  to transform according to the law (2.6) has 
the infinitesimal form (3.9), where 

w, -a,a”B, =(ola”Fv,(x)145,1,) = 0. 

S(OIA, (x)I4cl)) (OIA,(X)I~:I)) -(OIA, (X )b(d 

J J 

Here Q; (x) and ,y‘(x) are the transformed functions whose transformation laws we 
are looking for. Substituting the explicit form (4.9) of B,(x; d(1,) in equation (3.9) 
and taking into account the properties of the functions A, and A,” and the conditions 
(4.10) and (4.11), we obtain for the special conformal transformations of the functions 
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Remark 1. As can be seen from equation (4.13) the variation of the field (7,y(y)) 
does not vanish even when 7 = 0 = x (i.e. the Feynman gauge). In this case we have 

8(7x(y))=--4(a . c p ( Y ) )  

which means that the field S ( x ) ,  absent in  the Feynman gauge, appears here. 

Remark 2. As is shown in Stoyanov and Sotkov (1981) the condition 

8'6, ( x  ) = O R  (x  ) R ( x )  E S W i )  (4.15) 

separates the space %'yl, larger than Xyl), i.e. Xyl) c %'yl,. This larger space is conformal 
invariant also and equations (4.12) are satisfied in it. The transformation laws of the 
vectors ~%' l )~ ,  (determined by the functions {@,, i ) )  which have been found in 
the paper quoted above can reduce to those given by (4.13) and (4.14) with the help 
of the transformations 

4, =(Pr +a$ = 7x - ( x  - 1)OR. (4.16) 

These transformations map the space %'& into and they reduce the condition 
(4.15) to (4.10). The vectors I ~ ) E X [ )  determined by the functions {a,R, UZ?} have . .  
zero length. It is easy to see that the space Xpl) is isomorphic to the factor space 
%?l) 1%: ) . 

5. Physical photon states 

The subspace %':I) constructed in 0 4 does not satisfy all requirements for a physical 
space. It is easy to see that the scalar product (4.8) which in Xy1) has the form 

(JIL I4:l)) = -i j ~ ? ( ~ ) c p z , ( Y  P - ( X  - Y )  d4X d4Y - i A  I , f l ( X ) X Z ( Y  1E-b - Y  1 d4X d4Y 

(5.1) 
is not positive definite. 

We shall consider here two mutually orthogonal subspaces of %'pi). The first one, 
%':, consists of the vectors lcp) determined by the functions {cp,, 0). The scalar squares 
of these vectors are non-negative. The second space Xc consists of the vectors Ix) 
characterised by the functions (0 ,~ ) .  The scalar product (5.1) in the space Xc is 
indefinite (see Zwanziger 1978, Sotkov er a1 1979, Mintchev 1980). Starting from 
the laws (4.12) and (4.13) it is easy to check that the space X i  is conformal invariant, 
At the same time the special conformal transformations bring the vectors Icp) out of 
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the space %':. This means that the representation given by (4.13) and (4.14) is 
non-decomposable. 

An important property of the space %': is that its vectors Ix)  are annihilated by 
the negative frequency part of the Maxwell tensor 

F;" IX) = 0. (5.2) 

Obviously this property shows that the vectors from X(: cannot be considered as 
physical photon states even if they have positive scalar square. Then we define the 
subspace of one photon with the non-negative scalar square as the factor space 

x;1, = %'?l)I%'(:. 
In order to obtain the one-photon physical space 2':; we should factorise by 

the subspace %';i) of the zero length vectors, i.e. satisfying the condition (C$(~~/C$(~)) = 0 
where 

(5.3) 

In this way the Evidently the expression (5.3) determines a norm in the space 
physical one-photon state space is 

X P h  - 
(1) - %'hl%'Yl). 

Since the norm (5.3) in X;l) is positive definite and conformal invariant it is evident 
that: in the physical space %':; a unitary irreducible representation of the conformal 
group is realised. 

The n-particle state space and the full physical space are constructed by the 
standard procedure from the one-particle space (see e.g. Strocchi and Wightman 
(1974)) and we do not discuss their properties here. 

6. Concluding remarks 

In QED with interactions usually one uses the following equations for the electromag- 
netic field (the so-called 6 gauge): 

@A, -[a,a"A, = j ,  

[ = constant # 1 aWjW = 0. 

It follows immediately from (6.1) that all its solutions (even with different 6 and j,) 
are solutions also of equation (4.1). We shall show (if the quantisation preserves 
condition (6.2)) that the space XPh (and also %'') determined in 9 5 has no common 
elements (except the zero) with the state space constructed on the basis of equation 
(6.1) and satisfying the Gupta-Bleuler condition 

(4JblaWA,I4;)=o. (6.3) 
Indeed, due to equation (6.1) in the space Zph (and e) only the free Maxwell's 
equations are satisfied whereas in the Gupta-Bleuler state space with interaction we 
have 

( ~ J ~ I K M ,  -i,I&) = 0. (6.4) 



2826 G MSotkov and D TStoyanov 

Since the free Gupta-Bleuler state space ( j ,  = 0) is a subspace of our space Zph (or 
&Po) we have proved the following statement: the Gupta-Bleuler physical spaces with 
and without interaction cannot have common elements (with the exception of the zero 
vector). 

On the other hand, in our formulation of QED on the basis of equations (3.1) and 
(3.2) such a statement is not valid. But it turns out that in addition the physical state 
space with interaction is also conformal invariant. 

We note that equation (3.2) can arise as a consequence from an equation of the 
form (6.1) but with another currznt: 

0-4, -(a,a"A, = S ( x ) j , ( x )  a@j,, = 0 [Zl. (6.5) 

Finally we remark also that the commutator function (4.2) chosen in this paper is 
a particular solution of equation (4.1) and evidently it is not the only one. Therefore, 
in the free field case it is possible on the basis of a more general commutation function 
to construct a quantum system leading to the state space larger than &Po. 
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